基于Mask R-CNN深度学习的羊绒羊毛纤维识别技术作者: 从明芳;李子印;卢鸯;韩高锋;谢凌佳;王启真
摘要:为提高羊绒羊毛纤维定量的自动化程度,引入基于掩模区域卷积神经网络(Mask R-CNN)深度学习技术,对通过光学显微镜采集的图片进行图片处理、算法模型优化,以及学习和训练,建立起山羊绒和绵羊毛的自动识别模型.采用测试集对所建立的模型进行了验证测试,结果表明,对山羊绒和绵羊毛纤维的自动识别正确率达到95% 以上,证实了所建立的识别技术的可行性. 基于深度学习的介形类化石层次化识别作者: 安玉钏;陈雁;黄玉楠;李平;蒋裕强;王占磊
摘要:介形类化石对地质年代的确定、古湖泊和古海洋的研究、古环境的重建以及海底石油资源的勘探等工作都具有重要意义.然而,现有识别化石颗粒的方法费时费力,准确率也有待提高.鉴于介形类化石颗粒的类别具有科、属、种的层次结构,种类数量庞大,所以笔者等提出了一种层次化识别方法.首先进行目标检测,实现介形类化石的定位与属类划分;之后在目标检测模块的基础上进行智能识别,使用卷积神经网络和支持向量机提取属类下更细微的种...查看全部>>