论文检索
期刊
全部知识仓储预印本开放期刊机构
高级检索

GX4CrNi13-4马氏体不锈钢激光熔覆工艺参数优化和仿真模拟OA北大核心CSTPCD

Optimization and simulation of laser cladding process parameters for GX4 CrNi13-4 martensitic stainless steel

中文摘要英文摘要

为提升激光熔覆质量,建立以激光功率、扫描速度及送粉量为主要工艺参数的有限元分析过程,减少熔覆工艺参数优化的研发周期和经济成本.通过温度场和应力场模拟GX4CrNi13-4马氏体不锈钢激光熔覆数据对照实验结果的方法,验证不同参数下的成形质量,优化激光熔覆工艺参数.结果表明:为避免基体熔穿和高质量致密度,激光功率的调整范围应控制在1800~2000 W之间;增加送粉量可以有效降低温度和残余应力.3个工艺参数中激光功率是主要调控参数,对熔覆质量影响最大.综合致密度分析和显微硬度测试评估不同参数下样品的熔覆质量和残余应力分布,发现最佳工艺参数组合为激光功率1800 W、扫描速度10 mm/s以及送粉量10 g/min.实验结果与应力场模拟的趋势一致,进一步验证模拟数据的准确性.

To improve the quality of laser cladding,a finite element analysis process was established,focusing on laser power,scanning speed and powder feed rate as the main process parameters,aiming to reduce the research and development cycle and economic costs of optimizing cladding process parameters.By comparing the temperature and stress field simulation of GX4CrNi13-4 martensitic stainless steel laser cladding data with experimental results,the forming quality under different parameters is verified,optimizing the laser cladding process parameters.The results indicate that the adjustment range of laser power should be controlled between 1800 W to 2000 W to avoid substrate penetration and ensure sufficient density;increasing the powder feed rate effectively reduces temperature and residual stress.Among the three process parameters,laser power has the most significant impact on cladding quality.A comprehensive analysis of density and microhardness tests to assess the cladding quality and residual stress distribution under different parameters reveals that the optimal combination of process parameters is a laser power of 1800 W,scanning speed of 10 mm/s,powder feed rate of 10 g/min.The experimental results are consistent with the trends of stress field simulations,further validating the accuracy of the simulation data.

张华炜;何凌欢;侯娟;李家民;黄爱军

上海理工大学 材料与化学学院 增材制造研究院,上海 200093蒙纳士大学 增材制造中心,澳大利亚 诺丁山 3168

金属材料

GX4CrNi13-4马氏体不锈钢;工艺参数优化;有限元模拟;温度场;应力场

GX4CrNi13-4 martensitic stainless steel;process parameters optimization;finite element simu-lation;temperature field;stress field

《材料工程》 2024 (007)

83-93 / 11

深圳市协同创新科技计划-国际科技合作项目资助(GJHZ20200731095203011)

10.11868/j.issn.1001-4381.2023.000704

评论

下载量:0
点击量:0